144 research outputs found

    Rendezetlen kvantum spinrendszerek = Disordered quantum spinsystems

    Get PDF
    Különböző sokrészecskés rendszerek (kvantum spinláncok, létrák és réteges rendszerek; klasszikusspinrendszerek és sztochasztikus folyamatok, stb.) kooperatív viselkedését vizsgáltuk rendezetlenségjelenlétében. Speciális renormálási csoport eljárást használva megállapítottuk, hogy számos vizsgáltproblémánánál a rendezetlenségi fluktuációk domináns szerepet játszanak a determinisztikus (termikus, kvantum, sztochasztikus) fluktuációkkal szemben. A kvantum spinláncoknál ismert végtelenül rendezetlenés erősen rendezetlen fixpont fogalmát kiterjesztettük klasszikus rendszerekre és sztochasztikusfolyamatokra is. Több egydimenziós probléma esetén (rendezetlen kvantum Ising modell, rendezetlen kontakt folyamat, rendezetlen aszimmetrikus kizárási folyamat, stb.) aszinguláris tulajdonságokat aszimptotikusan egzaktul meghatároztuk,mind a kritikus pontban, mind azon kívül az un. Griffiths fázisban. Vizsgáltuk a rendezetlenség erősségénekváltozásakor tapasztalható átmeneteket is. | We have studied the cooperative behaviour of different manyparticle systems (quantum spin chains, laddersand layered systems; classical spin systems and stochastic processes, etc.) in the presence of quencheddisorder. Using a special renormalization group procedure we have found that for several studied problemsthe disorder fluctuations play a dominant role over deterministic (thermal, quantum or stochastic) fluctuations. The concept of infinite disorder and strong disorder fixed points, known for random quantum spin chains hasbeen extended to classical systems and stochastic processes, too. For several one-dimensional problems(random quantum Ising model, random contact process, random asymmetric exclusion process, etc.) thesingular properties are asymptotically exactly determined, both at the critical point and outside thecritical point, in the so called Griffiths phase. We have also studied the cross-overs by varying thestrength of the disorder

    Corner contribution to percolation cluster numbers

    Full text link
    We study the number of clusters in two-dimensional (2d) critical percolation, N_Gamma, which intersect a given subset of bonds, Gamma. In the simplest case, when Gamma is a simple closed curve, N_Gamma is related to the entanglement entropy of the critical diluted quantum Ising model, in which Gamma represents the boundary between the subsystem and the environment. Due to corners in Gamma there are universal logarithmic corrections to N_Gamma, which are calculated in the continuum limit through conformal invariance, making use of the Cardy-Peschel formula. The exact formulas are confirmed by large scale Monte Carlo simulations. These results are extended to anisotropic percolation where they confirm a result of discrete holomorphicity.Comment: 7 pages, 9 figure

    Random transverse-field Ising chain with long-range interactions

    Get PDF
    We study the low-energy properties of the long-range random transverse-field Ising chain with ferromagnetic interactions decaying as a power alpha of the distance. Using variants of the strong-disorder renormalization group method, the critical behavior is found to be controlled by a strong-disorder fixed point with a finite dynamical exponent z_c=alpha. Approaching the critical point, the correlation length diverges exponentially. In the critical point, the magnetization shows an alpha-independent logarithmic finite-size scaling and the entanglement entropy satisfies the area law. These observations are argued to hold for other systems with long-range interactions, even in higher dimensions.Comment: 6 pages, 4 figure
    • …
    corecore